Comparing Physical Changes to Chemical Changes
Did You Know physical and chemical changes affect substances in different ways.
Physical Change

Physical changes do not change the composition of a substance, only the physical properties.

Evidences of a physical change include:

Change in the state of matter
Change in size or shape
Physical Change: Change in state of matter

- When a substance changes from one state of matter to another (for example, changing from solid to liquid, from liquid to solid, or from liquid to gas), the composition of the substance remains the same.
Physical Change: *Change in state of matter*

- Examples of change in state might include: melting of ice cream, hardening of melted wax, or evaporating of water from wet clothes.
Physical Change: *Change in state of matter (form)*

- When a substance changes directly from a gas to a solid (the forming of frost from water vapor) or from a solid to a gas (dry ice, solid air fresheners) that change of state is called *sublimation*. *This is still a physical change because the composition of the substance remains the same.*
Physical Change: *Change in size or shape*

- When a substance changes in size or shape (for example, cutting, tearing, dissolving, stretching, or wrinkling), its composition remains the same.
- Examples of change in size or shape might include: shredding paper, dissolving sugar in water, stretching a rubber band, wadding up a piece of paper, or denting a piece of metal.
Chemical changes

- result in the formation of one or more new substances with new chemical and physical properties.
- Evidences that a chemical change may have occurred include:
 - Color Change
 - Chemical Change
 - Temperature Change
 - Formation of Precipitate
 - Formation of a gas
Chemical changes: changes in color

- When a substance changes color, the chemical composition of the substance may have changed (for example, iron turns to a reddish-brown when it rusts, clothes change color when bleach is added, apples turn brown when they react with oxygen in the air, or marshmallows turn black when burned).
Chemical changes : changes in color

- It is possible to have a color change without a chemical change (for example, adding food coloring to water).
When a substance is combined with another substance, there may be an increase or decrease in temperature (for example, when wood burns to ash and gases, the temperature increases.)

http://www.stovesonline.co.uk/stove/img/wood-burning.jpg
http://www.inquiryinaction.org/img/content/chapter5/5.4/add_baking_soda_to_vinegar.jpg
Not a chemical change

- It is possible to have a temperature change without a chemical change (for example, warming of the water in a pond).
Chemical Change: Formation of a Precipitate

- When two solutions are combined, they may form a solid substance. This solid substance is called a precipitate and indicates that a chemical change has occurred.
Chemical Change: Formation of a Precipitate

- For example when carbon dioxide is combined with aqueous calcium hydroxide (limewater), solid calcium carbonate (chalk) is formed as the precipitate.
- The precipitate may be in the form of very small particles, appearing as cloudiness in the solution or as a solid which settles to the bottom of the container.
Chemical Change: Formation of a gas

- When solid or liquid substances are combined, they may form gas bubbles.
- The formation of the gas may indicate that a chemical reaction has taken place. For example, when vinegar is added to baking soda, it forms carbon dioxide bubbles.
- It is possible to form gas without a chemical change (for example, when water is heated to boiling).
- [Video: Chemical Change versus Physical Change](http://video.google.com/videosearch?q=chemical%20change%20versus%20physical%20change&rls=com.microsoft:en-us&oe=UTF-8&startIndex=&startPage=1&um=1&ie=UTF-8&sa=N&hl=en&tab=wv#)